Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.563
1.
Helicobacter ; 29(1): e13048, 2024.
Article En | MEDLINE | ID: mdl-38716864

Current global variations exist in Helicobacter pylori (H. pylori) eradication regimens. Triple therapy (TT), bismuth quadruple therapy (BQT), and high-dose dual therapy (HDDT) currently represent the predominant regimens. These regimens diverge in terms of treatment duration, the utilization of susceptibility testing, acid-inhibiting drug administration, and patient education. We conducted a comprehensive systematic literature review on these H. pylori treatment regimens. Our review aims to provide standardized treatment recommendations for H. pylori, reducing the risk of amalgamating findings from diverse eradication regimens. Recent research suggests that the optimal treatment duration for TT and BQT may be 14 and 10 days, respectively. Selecting the appropriate treatment duration for HDDT should rely on regional research evidence, and 14 days may be the optimal duration. The incorporation of susceptibility testing in TT is of paramount importance. In the case of BQT, the absence of susceptibility testing may be considered as an option, contingent upon cost and availability, and should be determined based on local antibiotic resistance patterns and the efficacy of empirical regimens. The type and dosage of acid-inhibiting drug would affect the efficacy of these regimens. Acid-inhibiting drugs should be selected and applied reasonably according to the population and therapies. Adequate patient education plays a pivotal role in the eradication of H. pylori. In regions with accessible local research evidence, the 10-day empirical BQT regimen may be considered a preferred choice for H. pylori eradication.


Anti-Bacterial Agents , Drug Therapy, Combination , Helicobacter Infections , Helicobacter pylori , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Humans , Helicobacter pylori/drug effects , Anti-Bacterial Agents/therapeutic use , Bismuth/therapeutic use , Proton Pump Inhibitors/therapeutic use
2.
Helicobacter ; 29(3): e13084, 2024.
Article En | MEDLINE | ID: mdl-38717034

BACKGROUND: Recently, a simple tailored therapy based on clarithromycin resistance has been implemented as Helicobacter pylori (H. pylori) eradication therapy. Nonetheless, despite the tailored therapy and frequent adverse events, studies on treatment period are lacking. This study aimed to compare the H. pylori eradication rates of 7-day and 14-day tailored therapy regimens according to clarithromycin resistance. MATERIALS AND METHODS: This multicenter, prospective, randomized, noninferiority trial enrolled H. pylori-positive patients who were randomly assigned to 7-day and 14-day regimen groups, depending on the presence or absence of clarithromycin resistance by 23S rRNA gene point mutations. Standard triple therapy (STT) (20 mg rabeprazole, 1 g amoxicillin, and 500 mg clarithromycin twice daily) or bismuth quadruple therapy (BQT) (20 mg rabeprazole twice daily, 500 mg metronidazole thrice daily, 120 mg bismuth four times daily, and 500 mg tetracycline four times daily) was assigned by clarithromycin resistance. Eradication rates and adverse events were evaluated. RESULTS: A total of 314 and 278 patients were included in the intention-to-treat (ITT) and per-protocol (PP) analyses, respectively; however, 31 patients were lost to follow-up, whereas five patients violated the protocol. Both the 7-day and 14-day regimens showed similar eradication rates in the ITT (7-day vs. 14-day: 78.3% vs. 78.3%, p > 0.99) and PP (87.9% vs. 89.1%, p = 0.851) analyses. Non-inferiority was confirmed (p < 0.025). A subgroup analysis according to clarithromycin resistance (clarithromycin resistance rate: 28.7%) revealed no significant difference in eradication rates between the 7-day and 14-day STT (90.0% vs. 90.1%, p > 0.99) and BQT (82.5% vs. 86.5%, p = 0.757). Furthermore, adverse events did not significantly differ between the two groups. CONCLUSIONS: The 7-day triple and quadruple therapy according to clarithromycin resistance showed similar eradication rates, as compared to the 14-day therapy.


Anti-Bacterial Agents , Clarithromycin , Drug Resistance, Bacterial , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Clarithromycin/therapeutic use , Clarithromycin/pharmacology , Helicobacter pylori/drug effects , Helicobacter pylori/genetics , Male , Female , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Middle Aged , Adult , Prospective Studies , Drug Therapy, Combination , Aged , Treatment Outcome , Rabeprazole/therapeutic use , Rabeprazole/administration & dosage , Bismuth/therapeutic use , Bismuth/administration & dosage , RNA, Ribosomal, 23S/genetics
3.
Colloids Surf B Biointerfaces ; 238: 113923, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692173

The rapid advancement of photodynamic therapy (PDT) antibacterial materials has led to promising alternatives to antibiotics for treating bacterial infections. However, antibacterial drugs have poor light absorption and utilization rates, which limits their practical application. Constructing two-dimensional (2D) heterojunctions from materials with matching photophysical properties has emerged as a highly effective strategy for achieving high-efficiency photo-antibacterial performance. Here, we designed and prepared an atom co-sharing Bi/Bi4O5Br2 nanosheet heterojunction by a simple in situ reduction. This heterojunction material combines outstanding biocompatibility with excellent bactericidal efficiency, which exceeded 90 % against Escherichia coli (a Gram-negative bacterium) and Staphylococcus aureus (a Gram-positive bacterium) under visible light irradiation, around nine-fold higher than that with pure Bi4O5Br2 nanosheets. The results suggest that localized surface plasmon resonance (LSPR) of shared Bi atoms on the Bi4O5Br2 nanosheets promotes light utilization and the separation and transfer of photo-generated charges, thus producing more abundant reactive oxygen species (ROS), which can partake in the PDT antibacterial effect. Our study underscores the potential utility of LSPR-enhanced Bi-based nanosheet heterojunctions for safe and efficient PDT to combat bacterial infections.


Anti-Bacterial Agents , Bismuth , Escherichia coli , Light , Nanostructures , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Nanostructures/chemistry , Bismuth/chemistry , Bismuth/pharmacology , Catalysis , Microbial Sensitivity Tests , Photochemical Processes , Reactive Oxygen Species/metabolism , Surface Plasmon Resonance , Photochemotherapy , Particle Size
4.
Helicobacter ; 29(2): e13073, 2024.
Article En | MEDLINE | ID: mdl-38601987

BACKGROUND: Helicobacter pylori infection and its associated diseases represent a significant global health concern. Patients who cannot use amoxicillin pose a therapeutic challenge and necessitate alternative medications. Preliminary research indicates that cefuroxime demonstrates promising potential for eradicating H. pylori infection, and there is a lack of comprehensive review articles on the use of cefuroxime. MATERIALS AND METHODS: This study conducts a thorough systematic literature review and synthesis. A comprehensive systematic search was conducted in PubMed, Web of Science, EMBASE, China National Knowledge Infrastructure, China Biology Medicine disc, and Wanfang Data up to January 13, 2024. The search strategy utilized the following keywords: (Cefuroxime) AND (Helicobacter pylori OR Helicobacter nemestrinae OR Campylobacter pylori OR Campylobacter pylori subsp. pylori OR Campylobacter pyloridis OR H. pylori OR Hp) for both English and Chinese language publications. Sixteen studies from five different countries or regions were included in final literature review. RESULTS: Analysis results indicate that H. pylori is sensitive to cefuroxime, with resistance rates similar to amoxicillin being relatively low. Regimens containing cefuroxime have shown favorable eradication rates, which were comparable to those of the regimens containing amoxicillin. Regarding safety, the incidence of adverse reactions in cefuroxime-containing eradication regimens was comparable to that of amoxicillin-containing regimens or other bismuth quadruple regimens, with no significant increase in allergic reactions in penicillin-allergic patients. Regarding compliance, studies consistently report high compliance rates for regimens containing cefuroxime. CONCLUSION: Cefuroxime can serve as an alternative to amoxicillin for the patients allergic to penicillin with satisfactory efficacies, safety, and compliance.


Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/drug therapy , Cefuroxime/therapeutic use , Anti-Bacterial Agents/adverse effects , Drug Therapy, Combination , Amoxicillin/therapeutic use , Bismuth/adverse effects , Penicillins/therapeutic use , Treatment Outcome , Proton Pump Inhibitors/therapeutic use
5.
Mikrochim Acta ; 191(5): 262, 2024 04 13.
Article En | MEDLINE | ID: mdl-38613581

Rapid and sensitive detection of carcinoembryonic antigen (CEA) is of great significance for cancer patients. Here, molybdenum (Mo) was doped into bismuth oxide (Bi2O3) by one-pot hydrothermal method forming porous tremella Bi2MoO6 nanocomposites with a larger specific surface area than the spherical structure. Then, a new kind of hydrangea-like TiO2/Bi2MoO6 porous nanoflowers (NFs) was prepared by doping titanium into Bi2MoO6, where titanium dioxide (TiO2) grew in situ on the surface of Bi2MoO6 nanoparticles (NPs). The hydrangea-like structure provides larger specific surface area, higher electron transfer ability and biocompatibility as well as more active sites conducive to the attachment of anti-carcinoembryonic antigen (anti-CEA) to TiO2/Bi2MoO6 NFs. A novel label-free electrochemical immunosensor was then constructed for the quantitative detection of CEA using TiO2/Bi2MoO6 NFs as sensing platform, showing a good linear relationship with CEA in the concentration range 1.0 pg/mL ~ 1.0 mg/mL and a detection limit of 0.125 pg/mL (S/N = 3). The results achieved with the designed immunosensor are comparable with many existing immunosensors used for the detection of CEA in real samples.


Biosensing Techniques , Bismuth , Hydrangea , Molybdenum , Humans , Biomarkers, Tumor , Carcinoembryonic Antigen , Porosity , Immunoassay
6.
Nano Lett ; 24(15): 4562-4570, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38591327

Heteroions doped Ag2S nanocrystals (NCs) exhibiting enhanced near-infrared-II emission (NIR-II) hold great promise for glioma diagnosis. Nevertheless, current doped Ag2S NCs paradoxically improved properties via toxic dopants, and the blood-brain barrier (BBB) constitutes another challenge for orthotopic glioma imaging. Thus, it is urgent to develop biofriendly high-bright Ag2S NCs with active BBB-penetration for glioma-targeted imaging. Herein, bismuth (Bi) was screened to obtain Bi-Ag2S NCs with high absolute PLQY (∼13.3%) for its matched ionic-radius (1.03 Å) with Ag+. The Bi-Ag2S NCs exhibited a higher luminance and deeper penetration (5-6 mm) than clinical indocyanine green. Upon conjugation with lactoferrin, the NCs acquired BBB-crossing and glioma-targeting abilities. Time-dependent NIR-II-imaging demonstrated their effective accumulation in glioma with skull/scalp intact after intravenous injection. Moreover, the toxic-metal-free NCs exhibited negligible toxicity and great biocompatibility. The success of leveraging the ion-radii comparison may unlock the full potential of doped-Ag2S NCs in bioimaging and inspire the development of various doped NIR-II NCs.


Glioma , Metal Nanoparticles , Humans , Bismuth , Radius , Metal Nanoparticles/chemistry , Skull , Glioma/diagnostic imaging
7.
BMC Gastroenterol ; 24(1): 131, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38609893

OBJECTIVE: To compare the potential efficacy and safety of dual therapy and quadruple therapy with vonoprazan (VPZ) as well as the standard quadruple therapy of proton pump inhibitor (PPI) for the eradication of Helicobacter pylori (Hp) infection in Hainan province. METHODS: A single-centre, non-blinded, non-inferiority randomized controlled trial was conducted at the outpatient department of gastroenterology at the Second Affiliated Hospital of Hainan Medical University from June 2022 to February 2023. 135 patients aged 18-75 years with Hp infection were enrolled and randomized into three different groups (group V1: VPZ 20 mg twice a day and amoxicillin 1.0 g three times a day for 14 days V2: vonoprazan 20 mg, amoxicillin capsules 1.0 g, furazolidone 0.1 g and bismuth potassiulm citrate 240 mg, twice daily for 14 days;; group V3: ilaprazole 5 mg, Amoxicillin 1.0 g, Furazolidone 100 mg, bismuth potassiulm citrate 240 mg, twice a day for 14 days). Four weeks after the end of treatment, Hp eradication was confirmed by rechecking 13C-urea breath test (UBT). RESULTS: The eradication efficacy of V1 and V3 was non-inferior to that of V2, which is consistent with the results obtained from the Kruskal-Wallis H test. The eradication rate by intentional analysis was 84.4% (38/45, 95%CI 73.4%-95.5%, P>0.05) for all the three groups. If analyzed by per-protocol, the eradication rates were 88.4% (38/43, 95%CI 78.4%-98.4%), 92.7% (38/41, 95%CI 84.4%-101.0%),88.4% (38/43,95%CI 78.4%-98.4%) in groups V1, V2 and V3, respectively, which did not show a significant difference (P > 0.05). The incidence of adverse effects was significantly lower in VPZ dual therapy compared to the other two treatment regimens (P < 0.05). VPZ dual therapy or quadruple therapy was also relatively less costly than standard quadruple therapy. CONCLUSION: VPZ dual therapy and quadruple therapy shows promise of not being worse than the standard quadruple therapy by a clinically relevant margin. More studies might be needed to definitively determine if the new therapy is equally effective or even superior.


Helicobacter Infections , Helicobacter pylori , Pyrroles , Sulfonamides , Humans , Helicobacter Infections/drug therapy , Bismuth/therapeutic use , Furazolidone/therapeutic use , Amoxicillin/therapeutic use , Citrates
8.
Sci Rep ; 14(1): 8986, 2024 04 18.
Article En | MEDLINE | ID: mdl-38637591

Potassium-competitive acid blockers (P-CABs) provide potent acid inhibition, yet studies on P-CAB-based quadruple therapy for H. pylori eradication are limited. We theorized that integrating bismuth subsalicylate into a quadruple therapy regimen could enhance eradication rates. However, data on the efficacy of vonoprazan bismuth quadruple therapy are notably scarce. Therefore, the aim of this study was to evaluate the efficacy of vonoprazan-based bismuth quadruple therapy in areas with high clarithromycin and levofloxacin resistance. This was a prospective, single-center, randomized trial conducted to compare the efficacy of 7-day and 14-day vonoprazan-based bismuth quadruple therapy for H. pylori eradication between June 1, 2021, and March 31, 2022. Qualified patients were randomly assigned to the 7-day or 14-day regimen (1:1 ratio by computer-generated randomized list as follows: 51 patients for the 7-day regimen and 50 patients for the 14-day regimen). The regimens consisted of vonoprazan (20 mg) twice daily, bismuth subsalicylate (1024 mg) twice daily, metronidazole (400 mg) three times daily, and tetracycline (500 mg) four times daily. CYP3A4/5 genotyping and antibiotic susceptibility tests were also performed. Successful eradication was defined as 13negative C-UBTs 4 weeks after treatment. The primary endpoint was to compare the efficacy of 7-day and 14-day regimens as first-line treatments, which were assessed by intention-to-treat (ITT) and per-protocol (PP) analyses. The secondary endpoints included adverse effects. A total of 337 dyspeptic patients who underwent gastroscopy were included; 105 patients (31.1%) were diagnosed with H. pylori infection, and 101 patients were randomly assigned to each regimen. No dropouts were detected. The antibiotic resistance rate was 33.3% for clarithromycin, 29.4% for metronidazole, and 27.7% for levofloxacin. The CYP3A4 genotype was associated with 100% rapid metabolism. The H. pylori eradication rates for the 7-day and 14-day regimens were 84.4%, 95% CI 74.3-94.2 and 94%, 95% CI 87.4-100, respectively (RR difference 0.25, 95% CI 0.03-0.53, p value = 0.11). Interestingly, the 14-day regimen led to 100% eradication in the clarithromycin-resistant group. Among the patients in the 7-day regimen group, only two exhibited resistance to clarithromycin; unfortunately, neither of them achieved a cure from H. pylori infection. The incidence of adverse events was similar in both treatment groups, occurring in 29.4% (15/51) and 28% (14/50) of patients in the 7-day and 14-day regimens, respectively. No serious adverse reactions were reported. In conclusion, 14 days of vonoprazan-based bismuth quadruple therapy is highly effective for H. pylori eradication in areas with high levels of dual clarithromycin and levofloxacin resistance.


Helicobacter Infections , Helicobacter pylori , Organometallic Compounds , Pyrroles , Salicylates , Sulfonamides , Humans , Clarithromycin/pharmacology , Bismuth/therapeutic use , Bismuth/adverse effects , Levofloxacin/adverse effects , Metronidazole/adverse effects , Prospective Studies , Cytochrome P-450 CYP3A , Anti-Bacterial Agents/adverse effects , Helicobacter Infections/genetics , Drug Therapy, Combination , Treatment Outcome
9.
Sci Rep ; 14(1): 9545, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664493

An essential research area for scientists is the development of high-performing, inexpensive, non-toxic antibacterial materials that prevent the transfer of bacteria. In this study, pure Bi2WO6 and Bi2WO6/MWCNTs nanocomposite were prepared by hydrothermal method. A series of characterization results by using XRD FTIR, Raman, FESEM, TEM, and EDS analyses, reveal the formation of orthorhombic nanoflakes Bi2WO6 by the addition of NaOH and pH adjustment to 7. Compared to pure Bi2WO6, the Bi2WO6/MWCNTs nanocomposite exhibited that CNTs are efficiently embedded into the structure of Bi2WO6 which results in charge transfer between metal ion electrons and the conduction or valence band of Bi2WO6 and MWCNTs and result in shifting to longer wavelength as shown in UV-visible and PL. The results confirmed that MWCNTs are stuck to the surface of the microflowers, and some of them embedded inside the Bi2WO6 nanoflakes without affecting the structure of Bi2WO6 nanoflakes as demonstrated by TEM. In addition, Pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite were tested against P. mirabilis and S. mutans., confirming the effect of addition MWCNTs materials had better antibacterial activity in opposition to both bacterial strains than pure Bi2WO6. Besides, pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite tested for cytotoxicity against lung MTT test on Hep-G2 liver cancer cells, and flow-cytometry. Results indicated that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have significant anti-cancer efficacy against Hep-G2 cells in vitro. In addition, the findings demonstrated that Bi2WO6 and Bi2WO6/MWCNTs triggered cell death via increasing ROS. Based on these findings, it appears that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have the potential to be developed as nanotherapeutics for the treatment of bacterial infections, and liver cancer.


Anti-Bacterial Agents , Antineoplastic Agents , Bismuth , Nanocomposites , Tungsten Compounds , Nanocomposites/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Bismuth/chemistry , Bismuth/pharmacology , Tungsten Compounds/chemistry , Tungsten Compounds/pharmacology , Nanotubes, Carbon/chemistry , Microbial Sensitivity Tests , Cell Survival/drug effects , Hep G2 Cells
10.
Helicobacter ; 29(2): e13077, 2024.
Article En | MEDLINE | ID: mdl-38682268

BACKGROUND: A novel regimen with high-dose dual therapy (HDDT) has emerged, but its impact on the gut microbiota is not well understood. This study aimed to evaluate the impact of HDDT on the gut microbiota and compare it with that of bismuth quadruple therapy (BQT). METHODS: We enrolled outpatients (18-70 years) diagnosed with Helicobacter pylori infection by either histology or a positive 13C-urea breath test (13C-UBT) and randomly assigned to either the BQT or HDDT group. Subjects consented to provide fecal samples which were collected at baseline, Week 2, and Week 14. Amplification of the V1 and V9 regions of the 16S rRNA was conducted followed by high-throughput sequencing. RESULTS: Ultimately, 78 patients (41 patients in the HDDT group and 37 in the BQT group) were enrolled in this study. Eradication therapy significantly altered the diversity of the gut microbiota. However, the alpha diversity rebounded only in the HDDT group at 12 weeks post-eradication. Immediately following eradication, the predominance of Proteobacteria, replacing commensal Firmicutes and Bacteroidetes, did not recover after 12 weeks. Species-level analysis showed that the relative abundances of Klebsiella pneumoniae and Escherichia fergusonii significantly increased in both groups at Week 2. Enterococcus faecium and Enterococcus faecalis significantly increased in the BQT group, with no significant difference observed in the HDDT group. After 12 weeks of treatment, the relative abundance of more species in the HDDT group returned to baseline levels. CONCLUSION: Eradication of H. pylori can lead to an imbalance in gut microbiota. Compared to BQT, the HDDT is a regimen with milder impact on gut microbiota.


Anti-Bacterial Agents , Bismuth , Drug Therapy, Combination , Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Gastrointestinal Microbiome/drug effects , Middle Aged , Male , Female , Bismuth/therapeutic use , Bismuth/administration & dosage , Adult , Aged , Helicobacter pylori/drug effects , Helicobacter pylori/physiology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Young Adult , Adolescent , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Proton Pump Inhibitors/therapeutic use , Proton Pump Inhibitors/administration & dosage
11.
J Dig Dis ; 25(3): 163-175, 2024 Mar.
Article En | MEDLINE | ID: mdl-38577962

OBJECTIVE: To update evidence-based data comparing the efficacy and safety of high-dose dual therapy (HDDT) and bismuth-containing quadruple therapy (BQT) in eradicating Helicobacter pylori infection through meta-analysis. METHODS: Multiple databases were systematically searched for randomized controlled trials (RCTs) published up to May 18, 2023. Dichotomous data were evaluated using risk ratio (RR) and 95% confidence interval (CI). Subgroup analysis, sensitivity analysis, risk of bias assessment, and quality of evidence evaluation were performed. RESULTS: Twenty RCTs containing 7891 subjects were included in the analysis. There was no statistically significant difference in H. pylori eradication rate between HDDT and BQT in the intention-to-treat (ITT) analysis (86.31% vs 84.88%; RR 1.02, 95% CI 1.00-1.04, P = 0.12). In the per-protocol (PP) analysis, the eradication rates for HDDT and BQT were 90.27% and 89.94%, respectively (RR 1.01, 95% CI 0.99-1.03, P = 0.44). Adverse events were significantly lower with HDDT than with BQT (RR 0.44, 95% CI 0.38-0.51, P < 0.00001). Patient adherence was significantly different between the two groups (RR 1.01, 95% CI 1.00-1.03, P = 0.02). Subgroup analysis based on antibiotic combinations within the BQT group showed a significantly higher eradication rate for HDDT than for BQT only when BQT used amoxicillin combined with clarithromycin (P = 0.0009). CONCLUSIONS: HDDT showed comparable efficacy with BQT for H. pylori eradication, with fewer adverse effects and higher compliance. Due to regional differences, antibiotic resistance rates, and combined BQT antibiotics, more studies are needed for further validation and optimization of HDDT.


Anti-Bacterial Agents , Bismuth , Drug Therapy, Combination , Helicobacter Infections , Helicobacter pylori , Proton Pump Inhibitors , Helicobacter Infections/drug therapy , Humans , Helicobacter pylori/drug effects , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/therapeutic use , Bismuth/administration & dosage , Bismuth/therapeutic use , Proton Pump Inhibitors/administration & dosage , Proton Pump Inhibitors/therapeutic use , Treatment Outcome , Randomized Controlled Trials as Topic , Amoxicillin/administration & dosage
12.
Chemosphere ; 356: 141911, 2024 May.
Article En | MEDLINE | ID: mdl-38583539

Oxygen vacancies (OVs) have garnered significant interest for their role as active sites, enhancing the catalytic efficiency of various catalysts. Despite their widespread application in environmental purification processes, the generation of OVs conventionally depends on high-temperature conditions and strong reducing agents for the extraction of surface partial oxygen atoms from catalysts. In this work, bismuth oxybromide (BiOBr) nanosheets with varying levels of OVs were synthesized via a simple and effective solvothermal method. This novel method affords precise control over the conduction band (CB) and valence band (VB) positions of BiOBr. The presence of different OVs exhibited varying photocatalytic efficiencies in the degradation of bisphenol A (BPA) under visible light irradiation, with higher levels of OVs resulting in superior photocatalytic performance. Furthermore, radical scavenger experiments demonstrated that superoxide oxides (O2•-) and holes (h+) were the primary reactive oxygen species for BPA degradation. Additionally, BiOBr-OVs exhibited excellent anti-interference and stability in water matrices containing diverse inorganic anions and organic compounds. This work provides a simple and effective approach for the fine-regulating of catalysts through interfacial defect engineering, paving the way for their practical application in environmental decontamination.


Benzhydryl Compounds , Bismuth , Oxygen , Phenols , Benzhydryl Compounds/chemistry , Bismuth/chemistry , Phenols/chemistry , Catalysis , Oxygen/chemistry , Water Pollutants, Chemical/chemistry , Light , Photolysis
13.
Environ Sci Pollut Res Int ; 31(20): 30085-30098, 2024 Apr.
Article En | MEDLINE | ID: mdl-38598155

Formaldehyde (HCHO) is one of the primary indoor air pollutants, and efficiently eliminating it, especially at low concentrations, remains challenging. In this study, BiVO4-TiO2 catalyst was developed using ultrasonic blending technology for the photocatalytic oxidation of low-level indoor HCHO. The crystal structure, surface morphology, element distribution, and active oxidation species of the catalyst were examined using XRD, SEM, TEM, UV-Vis, EDS, and ESR techniques. Our results demonstrated that the BiVO4-TiO2 catalyst, prepared by ultrasonic blending, exhibited good oxidation performance and stability. The HCHO concentration reduced from 1.050 to 0.030 mg/m3 within 48 h, achieving a removal rate of 97.1%. The synergy between BiVO4 and TiO2 enhanced the efficiency of separating photogenerated carriers and minimized the likelihood of recombination between photogenerated electrons and holes. Additionally, this synergy significantly enhanced the presence of hydroxyl radicals (·OH) on the catalyst, resulting in an oxidation performance superior to that of either BiVO4 or TiO2. Our research offers valuable insights for the development of new photocatalysts to address HCHO pollution.


Bismuth , Formaldehyde , Oxidation-Reduction , Titanium , Vanadates , Formaldehyde/chemistry , Titanium/chemistry , Vanadates/chemistry , Bismuth/chemistry , Catalysis , Light , Ultrasonics
14.
Chemosphere ; 356: 141952, 2024 May.
Article En | MEDLINE | ID: mdl-38599329

Photo-Fenton-like technology based on H2O2 is considered as an ideal strategy to generate reactive oxygen species (ROS) for antibiotic degradation, but O2 overflow in the process severely limits the utilization efficiency of H2O2. Herein, we fabricate Bi2MoO6 (BMO) photocatalyst modified with Frustrated Lewis pairs (FLPs) as a Fenton catalyst model for enhancing reuse of spilled O2. The FLPs created by the introduction of cerium and oxygen vacancy were found to contribute to regulate the electronic structure of BMO and further improve the acidic and basic properties of photocatalyst surface. More importantly, the frustrated acid and base sites can enhance the H2O2 and O2 interfacial adsorption process and provide an Ce4+-Ov-O2- active site on the surface of Ce-BMO nanosheets, which can promote O2/•O2-/1O2/H2O2 redox cycles to achieve high H2O2 utilization efficiency. Specifically, in the experiment using tetracycline as a photocatalytic degradation object, the degradation activity of Ce-BMO was 2.15 times higher than that of BMO pure phase. Quenching experiments and EPR assays also confirmed that 1O2 and •O2- were the dominant oxidative species. This study systematically reveals the design of Fenton photocatalytic active sites at the atomic scale and provides new insights into constructing FLPs photocatalysts with high H2O2 utilization efficiency.


Bismuth , Cerium , Hydrogen Peroxide , Photolysis , Hydrogen Peroxide/chemistry , Bismuth/chemistry , Cerium/chemistry , Catalysis , Molybdenum/chemistry , Iron/chemistry , Reactive Oxygen Species/chemistry , Oxidation-Reduction , Oxygen/chemistry
15.
Anal Chem ; 96(17): 6847-6852, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38639290

Organic photoelectrochemical transistor (OPECT) has shown substantial potential in the development of next-generation bioanalysis yet is limited by the either-or situation between the photoelectrode types and the channel types. Inspired by the dual-photoelectrode systems, we propose a new architecture of dual-engine OPECT for enhanced signal modulation and its biosensing application. Exemplified by incorporating the CdS/Bi2S3 photoanode and Cu2O photocathode within the gate-source circuit of Ag/AgCl-gated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) channel, the device shows enhanced modulation capability and larger transconductance (gm) against the single-photoelectrode ones. Moreover, the light irritation upon the device effectively shifts the peak value of gm to zero gate voltage without degradation and generates larger current steps that are advantageous for the sensitive bioanalysis. Based on the as-developed dual-photoelectrode OPECT, target-mediated recycling and etching reactions are designed upon the CdS/Bi2S3, which could result in dual signal amplification and realize the sensitive microRNA-155 biodetection with a linear range from 1 fM to 100 pM and a lower detection limit of 0.12 fM.


Copper , Electrochemical Techniques , Sulfides , Thiophenes , Electrochemical Techniques/instrumentation , Copper/chemistry , Sulfides/chemistry , Cadmium Compounds/chemistry , Biosensing Techniques/instrumentation , Bismuth/chemistry , Transistors, Electronic , Photochemical Processes , Polystyrenes/chemistry , MicroRNAs/analysis , Electrodes , Polymers/chemistry
16.
Langmuir ; 40(17): 9155-9169, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38641555

A lack of eco-friendly, highly active photocatalyst for peroxymonosulfate (PMS) activation and unclear environmental risks are significant challenges. Herein, we developed a double S-scheme Fe2O3/BiVO4(110)/BiVO4(010)/Fe2O3 photocatalyst to activate PMS and investigated its impact on wheat seed germination. We observed an improvement in charge separation by depositing Fe2O3 on the (010) and (110) surfaces of BiVO4. This enhancement is attributed to the formation of a dual S-scheme charge transfer mechanism at the interfaces of Fe2O3/BiVO4(110) and BiVO4(010)/Fe2O3. By introducing PMS into the system, photogenerated electrons effectively activate PMS, generating reactive oxygen species (ROS) such as hydroxyl radicals (·OH) and sulfate radicals (SO4·-). Among the tested systems, the 20% Fe2O3/BiVO4/Vis/PMS system exhibits the highest catalytic efficiency for norfloxacin (NOR) removal, reaching 95% in 40 min. This is twice the catalytic efficiency of the Fe2O3/BiVO4/PMS system, 1.8 times that of the Fe2O3/BiVO4 system, and 5 times that of the BiVO4 system. Seed germination experiments revealed that Fe2O3/BiVO4 heterojunction was beneficial for wheat seed germination, while PMS had a significant negative effect. This study provides valuable insights into the development of efficient and sustainable photocatalytic systems for the removal of organic pollutants from wastewater.


Bismuth , Ferric Compounds , Light , Norfloxacin , Peroxides , Vanadates , Vanadates/chemistry , Vanadates/radiation effects , Bismuth/chemistry , Norfloxacin/chemistry , Norfloxacin/radiation effects , Catalysis/radiation effects , Ferric Compounds/chemistry , Peroxides/chemistry , Photochemical Processes , Triticum/chemistry , Triticum/radiation effects
17.
Environ Sci Pollut Res Int ; 31(20): 29101-29112, 2024 Apr.
Article En | MEDLINE | ID: mdl-38568304

The transformation of photogenerated charge carriers (PC) in variable dimensional photocatalyst plays a pivotal role in unraveling the generation of reactive species (RS). However, the dimensional structure-activity relationship in photocatalysis remains elusive, with limited insights into its intricacies. Herein, we report a controlled synthesis strategy by using polyvinyl pyrrolidone (PVP)-assisted precipitation method for BiOI photocatalyst. Due to the steric hindrance of PVP, the 3D microsphere (3D-PVP0.5) and porous structure (3D-PVP1) of BiOI catalysts have been successfully prepared at room temperature. The 3D-PVP1 photocatalyst contains abundant mesopores and larger pores, which significantly shorten the diffusion distance of PC. Also, these PC in porous structure is beneficial for transferring from the inner phase to the surface of materials. Combined with optical property and radicals trapping experiments, the recombination rate of PC in porous structure performs a significant decrease, leading to the generation of more dominated ROS (•O2- and h+). The •O2- played a dominated role (86.98% of contribution rate) in photodegradation of tetracycline (TC) in 3D-PVP1 photocatalytic process. Compared with 2D nanosheet of BiOI (16.7% removal rate of TC), the as-prepared 3D porous structure of BiOI catalyst exhibits unique stable and high removal capacities (90.5%) for TC photodegradation under visible light irradiation. The kobs of 3D-PVP1 photocatalyst increased by 5.1 times than that of 2D nanosheet. To investigate its practical application, the effects of inorganic anions and pH have been systematically studied. This work sheds light on the design of variable dimension BiOI catalyst and provides more insight into the transfer mechanism of PC.


Light , Photolysis , Tetracycline , Tetracycline/chemistry , Catalysis , Porosity , Bismuth/chemistry
18.
Chemosphere ; 357: 142114, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663679

The designed synthesis of an S-scheme heterojunction has possessed a great potential for improving photocatalytic wastewater treatment by demonstrating increased the photoredox capacity and improved the charge separation efficiency. Here, we introduce the fabrication of a heterojunction-based photocatalyst comprising bismuth oxychloride (BiOCl) and bismuth-based halide perovskite (BHP) nanosheets, derived from metal-organic frameworks (MOFs). Our composite photocatalyst is synthesized through a one-pot solvothermal strategy, where a halogenation process is applied to a bismuth-based metal-organic framework (CAU-17) as the precursor for bismuth sourcing. As a result, the rod-like structure of CAU-17 transforms into well-defined plate and nanosheet architectures after 4 and 8 h of solvothermal treatment, respectively. The modulation of the solvothermal reaction time facilitates the establishment of an S-scheme heterojunction, resulting in an increase in the photocatalytic degradation efficiency of rhodamine B (RhB) and sulfamethoxazole (SMX). The optimized BiOCl/BHP composite exhibits superior RhB and SMX degradation rates, achieving 99.8% degradation of RhB in 60 min and 75.1% degradation of SMX in 300 min. Also, the optimized BiOCl/BHP composite (CAU-17-st-8h sample) exhibited the highest rate constant (k = 3.48 × 10-3 min-1), nearly 6 times higher than that of the bare BHP in the photocatalytic degradation process of SMX. The enhanced photocatalytic efficiency can be endorsed to various factors: (i) the in-situ formation of two-components BiOCl/BHP photocatalyst, derived from CAU-17, effectively suppresses the aggregation of pristine BHP and BiOCl particles; (ii) the S-scheme heterostructure establishes a closely-knit interfacial connection, thereby facilitating efficient pathways for charge separation/transfer; and (iii) the BiOCl/BHP heterostructure enhances its capacity to absorb visible light. Our investigation establishes an effective strategy for constructing heterostructured photocatalysts, offering significant potential for application in photocatalytic wastewater treatment.


Bismuth , Calcium Compounds , Metal-Organic Frameworks , Oxides , Rhodamines , Titanium , Water Pollutants, Chemical , Bismuth/chemistry , Titanium/chemistry , Calcium Compounds/chemistry , Oxides/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Metal-Organic Frameworks/chemistry , Rhodamines/chemistry , Photolysis , Wastewater/chemistry , Photochemical Processes
19.
J Inorg Biochem ; 256: 112571, 2024 Jul.
Article En | MEDLINE | ID: mdl-38669912

In this paper, a series of cyclometalated bismuth(III) complexes bearing C,O-bidentate ligands were synthesized and characterized by techniques such as UV-vis, NMR, HRMS, and single crystal X-ray diffraction. Meanwhile, their cytotoxicities against various human cell lines, including colon cancer cells (HCT-116), breast cancer cells (MDA-MB-231), lung cancer cells (A549), gastric cancer cells (SGC-7901), and normal embryonic kidney cells (HEK-293) were assessed in vitro. Compared with the clinical cisplatin, most of the synthesized complexes possessed significantly higher degrees of anticancer activity and selectivity, giving a selectivity index of up to 71.3. The structure-activity relationship study revealed that the anticancer performance of these bismuth(III) species depends on the factors of coordination environment surrounding the metal center, such as coordination number, coordination bonding strength, lone 6s2 electron pair stereoactivity. The Annexin V-FITC/PI double staining assay results suggested that the coordination environment-dependent cytotoxicity is ascribable to apoptosis. Western blot analysis confirmed the proposal, as evidenced by the down-regulating level of Bcl-2 and the activation of caspase-3. Furthermore, the representative complexes Bi1, Bi4, Bi6, and Bi8 exhibited relatively lower inhibitory efficiency on human ovarian cancer cells (A2780) than on its cisplatin-resistant daughter cells (A2780/cis), thus demonstrating that such compounds are capable of circumventing the cisplatin-induced resistance. This investigation elucidated the excellent anticancer performance of C,O-coordinated bismuth(III) complexes and established the correlation between cytotoxic activity and coordination chemistry, which provides a practical basis for in-depth designing and developing bismuth-based chemotherapeutics.


Antineoplastic Agents , Bismuth , Coordination Complexes , Humans , Bismuth/chemistry , Bismuth/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Ligands , Apoptosis/drug effects , Chelating Agents/chemistry , Chelating Agents/pharmacology , Chelating Agents/chemical synthesis , Cell Line, Tumor , Structure-Activity Relationship , HEK293 Cells
20.
Chemosphere ; 357: 141934, 2024 Jun.
Article En | MEDLINE | ID: mdl-38615957

In this study, the BiOBr/rGO nanocomposite photocatalysts are fabricated by a facile solvothermal method. The BiOBr growth on reduced graphene oxide (rGO) sheet could improve BiOBr's photocatalytic activity by increasing its adsorption ability, surface area, and charge carriers' separation efficiency. The prepared nanocomposites were characterized by XRD, Raman, FESEM, EDS, XPS, and UV-visible DRS. The BiOBr/rGO (BRG) nanocomposites showed improved photocatalytic activity for the photodegradation of Rhodamine B (RhB) dye and Tetracycline (TC) under visible light irradiation. Rhodamine B and tetracycline degradation efficiency were about 96% and 73% within 120 min under visible light irradiation. The PL analysis indicates that BiOBr/rGO nanocomposite exhibited maximum separation efficiency of photoinduced charge carriers. The trapping test confirmed that O2- and h+ are significant active photodegradation species. The GC-MS spectra detected the two plausible transformation routes of tetracycline degradation. The current work presented a low-cost and facile approach for fabricating Bi-based composites.


Anti-Bacterial Agents , Bismuth , Graphite , Light , Nanocomposites , Photolysis , Rhodamines , Tetracycline , Graphite/chemistry , Tetracycline/chemistry , Rhodamines/chemistry , Bismuth/chemistry , Catalysis , Anti-Bacterial Agents/chemistry , Kinetics , Nanocomposites/chemistry , Water Pollutants, Chemical/chemistry
...